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Directional solidification under uniaxial stress is analyzed. In the absence of stress, it is well known that the
moving planar front undergoes a morphological Mullins-Sekél8) instability. Under uniaxial stress, even
an interface at rest develops an instability known by the names of Asaro, Tiller, and Gi(ATER). This
paper analyzes the coupling between these two instabilities, a situation on which we have recently given a brief
account{Durandet al, Phys. Rev. Lett76, 3013(1996]. We discover that under favorable circumstances a
weak uniaxial stress of the order of 1 bar leads to a dramatic change of the Mullins-Sekerka instability. The
threshold, together with the microstructure scale, are shifted by amounts going up(to seeeragl decadés).
This effect should open new lines of both experimental and theoretical inquiries. A weakly nonlinear analysis
is presented by means of a Landau expansion. It is known that the MS bifurcation is subcritical for a small
enough solute partition coefficient, and is supercritical otherwise. The ATG instability is always subcritical.
The nonlinear evolution of the ATG instability leads to cusps which grow unstably, leading ultimately to the
fracture threshold. It is shown here that due to a subtle coupling between both instabilities, the MS bifurcation
in its supercritical regime may cause the MS-ATG coupled bifurcation to be supercritical. Discussions and
outlooks are presented. In particular it is appealing to speculate that the creation of giant causeways in igneous
rocks can be interpreted within the present contegx1.063-651X98)07010-X]

PACS numbgs): 81.10.Aj, 05.70.Fh, 81.30.Fb, 68.70w

I. INTRODUCTION heteroepitaxy, for example, where the lattice mismatch is the
source of axial stressgghe instability takes place via mass
It is by now well documented that a moving solidification surface diffusion in most cases but might also be supported
front in an external thermal gradiefdirectional solidifica- by other transport processescancy diffusion, impurity dif-
tion) undergoes a morphological Mullins-SekerddS) in-  fusion, etc). Though the instability is potentially present in
stability [1] above a critical growth velocity. The initially any strained solid, mass transport is needed to build up the
planar interface bifurcates into a cellular structure, whichfluctuation. The time scale which is needed depends strongly
itself bifurcates to deep cells and then to dendrites at highedn temperature. We shall review these points in this paper.
speed 2]. The cellular structure may also, at both snj@ll  The scale of the pattern is approximately given Xyq
and large speedgt], experience symmetry-breaking insta- ~ yE/og (E is the Young modulus This leads to a scale in
bilities, leading ultimately to spatiotemporal chaos. The scalehe range of 10—100 nm for typical heteroepitaxy. When the
of the patterns is roughly determined hy,s~/d,, which  solid is in contact with its melt, however, the liquid provides
is a compromise between two competing scales: the destakdmass reservoir, and the ATG instability manifests itself by
lizing diffusion lengthl ~D/V (whereV is the pulling speed a melting-crystallization process. That is to say chemical at-
andD the solute diffusion constanand the chemical capil- tachment or detachment at the front becomes the limiting
lary lengthdy=~yTy/LAT (L is the latent heat per unit factor for the development of the instability.
volume, y the surface tensior, the melting temperature, When the solid is in the bottom and the liquid on top, any
and AT the freezing range \ lies roughly in the corrugation raises the level of the solid and lowers that of the
10-100um range. More recently, Grinfelgh] brought out  liquid in an alternating manner. If the corrugation wave-
the idea, which was earlier presented by Asaro and Ti@igr  length is not too smallsee below for more detajl then
that when a solid is subject to a uniaxial stréss., when gravity can lay a stabilizing role. The typical length scale is
0o=0xx— 0,,7#0, oj; is the stress tenspthe solid-liquid expected to be of the order of the gravitational capillary
(or solid-vacuum planar interface becomes unstable andlength (as is the case for gravity wavesiarg
turns onto a cellular structufédsaro-Tiller-Grinfield(ATG) ~\vIgAp (g is the gravity, and\p the solid-liquid densi-
instability]. This instability is of elastic origin: a surface cor- ties differencg This leads to a scale in the range 0.1-1 cm.
rugation reduces the stored elastic energy. It must be emph#-must be noted that the wavelength given above could as
sized that this corrugation does not correspond to a bendingell be expressed in terms of a stress. Indeed, the above
of the solid(as it is the case when one applies a longitudinalvalue corresponds to the threshold one, where the gravity
pressure to a thin rgdHere, in contrast, the instability ma- effect (which is stabilizing precisely counterbalance the de-
terializes itself via mass transport and is independent o§tabilizing effect due to stress. An impressive experiment
whether the stresses are tensile or compressive. When theas performed by Balibar and co-workérg on solid Hé in
solid is in contact with vacuuna situation encountered in contact with the superfluid, and has unambiguously demon-
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Nonlinear calculations have shown that such an instability
may lead to fracture, though the external stress is a small
fraction of the atmospheric pressui&.

These front instabilities are important focuses of research xx xx
both on the technological and fundamental levels, and they - <
seem to embrace disparate situations ranging from low-
dimensional nanostructurgs] (e.g., quantum dojsto geol- T

strated the ATG instability taking place on a scale of 0.7 cm. l

ogy [10]. However, from the above scale estimates one
would naively expect that there iwirtually) no coupling
between the MS and ATG instabilities given the disparate
lengths on which they operate. We show here that in contrast FIG. 1. The configuration of surface forces after application of a
there is clearly strong interaction in the case of directionakmall perturbation to a prestrained solid.

solidification. Indeed the external thermal gradi€jtcom-

bined with other parameters, will be shown to play the rolenature of the bifurcation. A summary and an outlook are the
of an effective gravitygesAp=LG/T,,, where for typical ~subjects of Sec. VI. Technical details and useful derivations
materials we find thag.s= (10°—10%g (i.e., the effective are given in the appendixes.

gravity is several orders of magnitude larger than the real

gravity). This brings down the scale of the ATG instability to Il. ATG INSTABILITY

the range 10-10Qum, which is in the same range as the
MS scale, and strong coupling between the two instabilities
must be expected. An important result which follows from  Since the ATG instability has been identified rather re-
our analysis is that the MS stability tongue exhibits a dra-cently, we feel it worthwhile to discuss it separately, and to
matic change in the presence of weak uniaxial stress, of theresent some of its potential applications in other fields. We
order of the atmospheric pressure. In particular, the velocitghall then present its coupling to the MS instability in Sec.
threshold is reduced by a factor of about 10, and the microtll.

structure scale is decreased at low speed and increased atWe wish to describe the behavior of a solid submitted to
large speed by the same amount. Such an effect is clearly naniaxial stress and in contact with its melt. Let the two-phase
devoid of experimental testability. Usually, producing smallsystem initially be in equilibrium in a gravitational field
scales microstructures necessitates solidification at highgwhich is ordinary gravity for the pure ATG instability, but
speeds which are only accessible by means of laser meltingill be replaced with effective gravity in the case of direc-
or resolidification. Furthermore, it is very difficult to have tional solidification).

precise quantitative results. For example, accurate estimates The applied external stress is assumed to act along the
of the thermal gradient are difficult to obtain. It appears thatirection. Our choice of a coordinate system can be inferred
solidification under stress can lead, even at moderate velocirom Fig. 1. We shall see in this subsection that an instability
ties, to small scales. We shall discuss this point in detail irarises and may lead to a corrugation of the solid-liquid inter-
this paper. face via a melting-crystallization phenomenon.

For pure directional solidification, the planar liquid-solid  For simplicity, we restrict ourselves to planar strain and
interface undergoes a subcritical bifurcation in the standardsotropic elastic properties of the solid, i.e., we set the strain
velocity range(ranging from 1 to 100um/s) if the solute  component,,=0, which implies, via Hooke’s law,
partition coefficient is small enougfsmaller than approxi-
mately 0.45[11]), and a supercritical biforcation otherwise. _E / n o
Nozieres[12] showed that the ATG instability is always sub- TiT v\ YT 1024
critical. A fully nonlinear analysis show8] that the ATG
instability develops and deep grooves grow unstably, leadingvhere oy; is the stress tensdrepeated subscripts are to be
ultimately to fracture generation. Here a subtle interplay besummed over and o the Poisson ratio.
tween the two instabilities in the nonlinear regime is found. A simple intuitive argument exhibiting the origin of the
Depending on the parameters, the bifurcation can either alnstability was given by Nozies[13]. Suppose there is a
ways be subcritical regardless of the value of the partitiorsmall fluctuation of the interface at constant strain. Then the
coefficient, or can become supercritical if the partition coef-mechanical equilibrium conditions at the interface are no
ficient is not too small, though the ATG instability is always longer satisfied. The forces on the interface, exerted by the
subcritical. Thus a stressed solid, which would develogiquid, due to its pressurg,, and by the solid, due to the
grooves growing unstably without bound, can develop aanisotropic stress tensor, no, longer compensate for one an-
smooth and gentle front when driven away from equilibrium.other. In particular, there is a netngentialforce. (To linear

The scheme of this paper is as follows. Section Il will order in the perturbation, the normal forcés compensate
give a short review, plus some new results on the pure ATGor one anothey.Mechanical equilibrium is broken, and the
instability. In Sec. 1l we write down the model equations of solid will relax under the tangential force. The relaxation
the system including directional solidification. Section IV cannot lead back to the original staiechanges the strajn
presents the linearized version of the coupled instabilitiesso there is an instability.
and the far-reaching consequences. Section V is devoted to In the following we will assume that the system is above
the weakly nonlinear analysis, to the determination of thehe temperature of its roughening transition, i.e., the attach-
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ment kinetics are fast, resulting in a growth velodiprmal  where p, is the hydrostatic liquid pressure, and,,
to the interfacg that is proportional to the difference in =njoy;n;, o,=n;oyt;. Before proceeding further, some

chemical potential between the liquid and the solid: remarks are in ordefi) We have neglected capillary effects
in the above mechanical equilibrium conditiorr =
vn=—Ky(ps—p))=—K,Ap. (2 —p). It can be showr{15] that this is legitimate up to

corrections of the order af,/E, which is large only close to
Since the proportionality constaky is large, the system will  the fracture thresholdii) We consider the static version of
be in a state with smalA u, i.e., close to local equilibrium, elasticity, which is obviously legitimate for small velocities
whenever the growth velocity is limited by material diffu- as compared to the sound speéid) An important point
sion, as is the case in the solidification of alloys. Thereforewhich must be emphasized concerns the elastic effect due to
in treating directional solidification, we will not use E@Q)  the incorporation of the solute in the solid. This should ba-
directly, but rather exploit the mass conservation law to besically alter the equilibrium condition which relates the con-
presented in Sec. lll. The present formulation would be validcentrations on both phases. As shown by Speatat.[16],
for the experiment on heliurfi7], where the prevailing dis- this leads to small effects on the stability.
sipation mechanism is attachment/detachment at the front.  The boundary conditiong) read, explicitly,

However, Eq.(2) will serve to determine the concentra-

tion field at the interface in an extension of the Gibbs- P+ N0+ 20, NN+ N20,,=0, 9
Thomson condition to the elastic case. In the appendixes, we

show thatA u is given, to leading order, by NytxTxxt Nitz0xz+ Notyog,+ Not,0,,=0. (10

1— o2 ~ 5 The normal and the tangent are related to the interface posi-
Ap=—g(ou~ onn) >+ Yk +Apgl(X). (3 tion z=7(x,t) by
—(_ g7 ¥ 2

Herein oy =t;0y;t; and o,,=n;oy;n; (n; andt; are theith (Nx,N) = (= ¢l X, DI V1+(9L19%)%, (12)
components of the normal and the tangent unit vectors, re- _ — >

spectively are the purely tangential and normal components (tx ) = (1,981 ax)I N1+ (dL] %)= (12)

of the stress tensor, respectivelyjs the surface tension Let o denote the strain contribution of the prestrained

IS th_e mterface curvaturgin @menspngl fom)"__Af’:’_)S situation corresponding to the planar front solution. When
— py is the difference of the solid and liquid densitiéex) IS the solid surface deforms, the strain configuration will
the position of the solid-liquid interface, amdis the gravi-  change. For a general interface morphology the problem can
tf’:\tlonal constant. For convenience, we refer chemlcql POterhe tackled only numerically. Throughout this paper we will
tials to the unit volume of a piece of solid. This definition e concerned with linear and weakly nonlinear front excur-
differs from the conventional one, referring to the unit massgions where analytical solutions can be obtained. & ¢t

by a constant factops. Using our convention, we can omit gma| quantity denote the strength of the surface modulation
this factor in the denominators of E¢3) and in other for- [£(x,t)=eh(x,t), whereh is of order 1. The strain can be

mulgs. o written as
First, the elastic field must be computed. For the one-
dimensional deformations considered here, it is convenient g'ijzo'i(jo)+ eoi(jl)-i- ezai(jz>+ o+ (13)
to make use of the Airy functioi(x,z), which is related to
the stress tensor via We shall later see that one needs to go up to third order in
The boundary condition®) and (10) become, to that order,
52
O-XX:(?_)Z(, (4) O=p|+0'(zg)+ 60’§12>+ 62[h'20'0—2h'0'§(lz)+0'(222)]
z
+ (e —aHh'2—2n" 021+ - -, (14)
I°x 0=el —oh’ + oD+ 2l 6@ — (D — g
UZZ:E' (5 =€l -0y o7 1t el oG (03X —077)]
+€%h ’((T<ZZZ)— a'gg()) +ooh'3+ o-fg) — 2h'20'§(12>0<232)]
X 6 +... (15)
Oxz IXIZ (6)

We shall needr,; as well[see Eq(3)], which takes the form
It can be showrj14] from the Lameequations thak obeys o ) ) )
the biharmonic equation ou= 0y + ey + e[ —h'Zog+2h o\ + ol

V2V2x=0. 7 + (e V=W 242h 0@+ 03]+ ..

16
The elastic problem must be supplemented with mechani- (19
cal equilibrium conditions at the front. These are These quantities are understood to be evaluated at the front
z=eh(x,t). The quantityh(x,t) will also be expanded in
oon=—P1, on=0, (8) power series ok
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h(x,t) =hg(x,t) +ehy(x, t)+ - - -. a7 now hgo= —(1—0'2)0'(2)/(29ApE) if the unstrained interface
is atz=0. Thus from now on we shall redefine the origin at
Similarly we decompose the Airy function as the new position.
To ordere, Ap is lowered whenh; [h;=cos@X)] is
X(%,2,8)= x0(X,2) + ex1(X,Z,t) + - - -, (18) positive, and increased otherwise. That is to say the solid

chemical potential is lowered close to the maximum and in-
creased close to the minimum. Thus if a protuberance takes
gplace the crystallization will be favored on tdpe., in the
gonvex part of the interfageand melting occurs in the bot-
tom (in the concave partThis is the ATG instability. It must
be emphasized that this is a chemical instability and not a
mechanical one: the instability materializes itself through a
dition from Egs.(14) and (15) takes the formo‘®=—p, melting or growth process, ar_1d not as a buckling o_f the s_o_lid.
(and the second one is automatically satisfisdbreover, we If the solid were in contact with vacuum, then the instability

t haver@ =0 since no shear is imposed. It is clear thatwould be 'exp.ressed via mass traqsport along 'ghe surface
must | Xz = pose surface diffusioh The presence aof in front of h, in Eq.
the Airy functlon must, though the surface is plgnar, d(_apen(§21) reflects the fact that the stress relaxation penetrates over
on x andz in order to fulfill the boundary conditions. It is a a distance of order /into the bulk.
simple matter to check that Using the fact that ,= dh, /dt= wh, in the linear regime,

2 2 and making use of Eq2) we obtain, using Eq(21), the

X z ' . ;
Xo(X,2)=—p, > +(og— p|)§ (19 dispersion relation

where we have introduced the notatiop= {2 — ¢{? . Be-

causeoy# 0, we usually say that the system is subject to
uniaxial stress. As it will appear soon, this uniaxial stres
directly induces a morphological instability of the planar sur-
face.

In a planar geometrg=0. Thus the first boundary con-

202(1—a?)
e g* Ay (22)

w =K,

solves Eq.(7) together with boundary conditions, and pro-
vides o{9=0.

Here one clearly sees the destabilizing effect of elasticity,
and the stabilizing effects due both to surface tension and
) _ _ gravity.

The planar solutiort19), together withl = ehy=0, is un- In the absence of gravity the planar surface is unstable

stable against corrugations as longogs 0. This is what we  however small the uniaxial stress, is against perturbations
will show now. Suppose that the interface undergoes a flucpf wave numbers smaller than

tuationh;(x,t)=h,,'¥ "t whereh,, is a constant ampli-

tude. Because in the linear regime the Fourier modes are 2(1- 0?0l

independent, we consider one Fourier component only. To qc:E—y- (23
calculate the elastic field we inseyft[Eq. (18)] into Eq. (7).

We easily obtain thag, = (a+b2z)e'¥ 927!, whereaandb  |f one uses a small fraction of an atmospheric presgase

are integration constantthe conditiony=0 whenz——«  ysed for helium for the uniaxial stress (about

is used. These are easily determined from E(s}) and(15) 10% cgs;0.01 bar),E~10° and y~0.1 cgs, we obtain,

to ordere after expressingr;; in terms ofy. We straightfor-  _10 ¢m.

wardly obtaina=0 andb=—o¢hy; (hy;is yet an undeter-  |n the presence of gravity there is a critical stress above
mined constant In order to determine the stability condi- \hich the surface becomes unstable. This stress provides a
tion, one has to evaluate the chemical poten@alinduced  critical wave number for the instability. These threshold val-

by a shape fluctuation. For that purpose one needs to evalyes are obtained by solving= dw/dq=0. This yields
ate the stress contributiditq. (16)]

E A
Ty Tan= 0ol 1— 2qehy(x,1)]. (20) o2=—yghp, Qo= 97" (24)

1-o°

B. Linear analysis: The ATG instability

so that the difference in chemical potentia) becomes The threshold wavelength72q, is nothing but the gravity

capillary length, which is in general of the order a few mm.
This is consistent with the measurement of Ré&fl. The
corresponding threshold stress f@He is of aboutog,
(2)  ~10* cgs.

Since the ATG instability may have implications on other
The first term is composed of the zeroth-order contributionsystems, it is appropriate to make a short digression. In het-
and the first-order one. The zeroth-order contribution is posieroepitaxy a thin film is grown on a substrate. The lattice
tive, meaning that a stress increases the solid chemical parismatch causes a film to develop a strain. Provided that no
tential and renders it unfavorable. A melting of the planarmisfit dislocations occur, the stress in the film relaxes via an
front thus occurs. This melting is to be counterbalanced belastic deformation. We can recalculate the chemical poten-
the gravity effect. This is why we have added, in the gravitytial for a strained film. If the thickness is small, one has to
term, the constant contributidn, (the origin was up to now take into account the finite depth efferecisely as with
arbitrary). The new position of the solid-liquid interface is shallow water waves The chemical potential is approxi-

(1—0'2)0'(2) ,
Ap= T[1_4qfh1]+ €y9°h;+gAp(ehy+hg)
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mately (only the linear part is considergdiven by (where
the substrate is supposed to be rjgid

(1—0'2)06

Ap=|2—F——0*d—ya?|hy, (29)
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concentration fieldu=(c—c.)/Ac (Ac is the miscibility
gap andc,, is the concentration far ahead of the froabeys
the diffusion equation written in the laboratory frame

(27)

whered is the film thickness. One thus sees that relaxation

takes place after a critical thickness of order

vE
dCN_ZY
g9

(26)

where we have neglected? in comparison to 1(for
most situations o~1/3). The uniaxial stress oy
~E(Aa/a) (Aa/a is the lattice mismatgh On the other

hand, generallyy/E~a (because there is within a material

no other intrinsic length scale than the atomic ors® that

where lengths and time are reduced by2D/V and 7
=12/D, respectively,D being the mass diffusion constant,
and V the speed at which the sample is pulled through the
thermal gradient field. A similar equation holds for the solid
with a prefactorv=D4/D, whereDy is the diffusivity in the
solid, in front of the Laplacian. At the interface,is subject

to the mass conservation condition

ou ou

+v—| ,

P (28

valu—k(u=1)]=- >
|

S
d.~al(Aa/a)®>. A large enough mismatch isA@/a)

~1%, so thatd,~10%. There are many situations in mo- wherev, is the normal growth velocityk the partition coef-
lecular beam epitaxy where the critical thickness for the tranficient, andd/dn stands for the normal derivative, the sub-
sition from layer by layer growth into a three-dimensionalscripts| and s indicating the liquid and solid sides of the
(3D) growth occurs only after a few monolayers. A typical interface. For a moving boundary, there is a need for an
example is the case of Ge/Si, free of dislocations, where thadditional condition, which can be obtained from the balance
transition into 3D growththe so-called Stranski-Krastanow of mass transport across the interface. As discussed above,
[17] mode takes place only after 2—3 M[[18]. This di- for a molecularly rough interface the chemical potential dif-
lemma has not been resolved to dg26]. It is important to  ference across the front is small, so that transport across the
note that elastic effects seem to play an important role in thé&ont simply reduces t&\ u=pus— u;=0. Au is a function
fabrication of quantum dots. This topic is of much currentof temperature, concentration, and stréss strair) tensor.
interest, and where island self-organization with a size ofAny front displacement is associated with a chemical poten-
about 100 nm appears spontaneoUdl§], it is most likely tial difference. It is shown in the appendixes that this
due to(probably not solelyan instability of the present type. amounts to

Finally, it is important to note that although an elastic

instability is potentially present, its manifestation time is fi- (1-0%) ~ L

nite. It iz fixgd by thg sr,)lowest dissipation mechanism. For O~ A#= g (Gtt_U“”)2+7K+(T'_TM)m
“He, kinetic attchment seems to be the limiting factor. The

order of magnitude ok, (the kinetic coefficient entering)2 +¢m |L 29
is of aboutpk,~0.01cgg7] [1/(pk,) has a dimension of a Ty

velocity; its value is about 100 cni/provides for the fastest
growing mode a typical time of the order of 1-10 s. This is The first term accounts for the increase of the solid chemical
quite consistent with experiments. For the case of an impurgotential due to elastic deformations the second for capillary
liquid (Sec. Ill) mass diffusion in the liquid phase limits the effects, the third one for the front undercooling; (is the
instability. Finally, when a solid is in contact with vacuum, actual front temperaturd,,, the melting temperature of the
mass transport along the surface is the prevailing dissipatiopure solvent, andl the latent heat per unit volumeand the
mechanism. The time scale was discussed in[R6€l, and it last one for the concentration effecin( is the liquidus
depends on the surface diffusion constant which is a therslopg. Because we consider the thermal properties of both
mally activated quantity. It is shown there that time scale isphases to be identical, and neglect the latent heat generation
of the order of 0.1-1 cgs, whereD is diffusion constant. at the front, T is simply given byT=TM+GZ, whereG is

One needs at least diffusion constants of the order ofhe thermal gradient. Therefore, EQ9) takes the form(in

10 *-10"2 cmé/s to observe the instability within a few reqyced units, i.ez=7/,
seconds to a few minutes. Usually one expects diffusion con-
stant to be much smaller, implying a large time for the insta-
bility development. This problem is currently being ex-
plored.

k=xl)

2 2
u=1- |£_do’<_ n—(an Un;) Uo, (30
T ()
whered, andl; are the usual capillary and thermal lengths,
'll. MODEL EQUATIONS reduced by the diffusion length,
Let us now treat the coupling between the MS and ATG
instabilities. In Ref[21], we considered only the one-sided
model, appropriate for most solids, in order to keep the pre-
sentation concise. Here we give the general case, which is

only slightly more involved. In the liquid phase, the reducedwhile

_|mI|AC

|— YTwm
™ Gl

O~ [m[AcLI 3
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o, (1- 0.2) Tm | ] I - ] |
7T90T2E T mJAcL” (32 6 L N
In Eq. (30), we have subtracted from the full elastic effect
the contribution corresponding to the prestrained situation. 4 —
. : . - -
As in Sec. Il,0 is the applied uniaxial stress. The parameter ~
7 is associated with elasticity. It measures the ratio of the = 5 |
elastic energy stored due to the uniaxial stress over the latent %D
heat of melting, which is involved to “jump” the tempera- —
ture gapAT=|m|Ac. 0 B
Next we have an equation relating the concentrations on Lo
the liquid and solid sides of the interface, which reads _2- -
T T | T |
us=k(u—1). (33 -2 0 2 4 6

To close the description, we need equations for the elastic 1Og10(q)

problem. These were already discussed and solved in Sec. Il. £ 2. The neutral curvéthick solid line and the most dan-
Note that in Eq(30) the thermal gradient plays the same gerous modéthin solid line for the pure MS instability. The neu-

role as gravity. To see this, refer to EQ9) (with T,—Ty  tral curve in the presence of a uniaxial strégsck dashed ling

=G~§), and compare with Eq(3). One thus sees that the and the corresponding most dangerous mdtien dashed ling

effective gravity is given bg.Ap=GL/T,, . For most met- where»=0.001 in the one-sided model. The dotted litesutral

als L=10 J/g=108 erglg and T,,=1500 K, and typical curve: thick dotted line; most dangerous mode: thin dotted) line

thermal gradients ar&s=100 K/cm, and one findgqx correspond t077:~0.0015 where no velocity threshold exists any-

~10°-10" cgs=(10°—10*)g. While before we had a criti- more[1—47711/dy<0; see Eq(48)]. Hered,=10"°, andk=1,

cal wavelength of order 1 cm given by relatio®4), now,  and units are chosen so tHat=1 andD=1.

because the effective gravityy=(10°—10%g, the critical

wavelength for the ATG instability can fall in the 1gom  Where

range and hence a strong coupling with the MS instability

must be expected. Because the gravity appears only3lith

power in Eq.(24), the critical stress would be modified by

about 10 only(0.1 bar instead of 0.01 bar

1
Wo=dog%+ E—4nq. (39)

For =0, we recover the Mullins-Sekerka dispersion re-
IV. LINEAR STABILITY ANALYSIS lation. For a vanishing growth velocity (i.e.lp’\“|2> 1, g
~1>1) we can reduce the above dispersion relation in the

The equations of motion admit a planar front solution, the®n€-sided case to

position of which differs from that of the problem without 1

elasticity by the constant amouhy=6{=—7yl;. This is w=JiP+ o w(4 — 2) 39
due to the fact that the stress induces a solid meltiefgr to a TAT ) (39
Sec. ll. We have absorbed this quantity into a redefiniton ] )

of the z coordinate. The linear stability analysis of this solu- Which is the dynamical version of the ATG result when bulk

tion is rather straightforward, since the elastic and diffusivedissipation prevails. When compared to Kg2), one sees

problems couple only via the boundary conditions. that here there is an additional factgﬁ2+ o corresponding
We start out from perturbed solutions to the situation where dissipation is supported by diffusion.

A closer analysis of Eq(37), given in the appendixes,
u(x,z,t)=ug(z) + euy(2)expligx+ wt), (39 reveals that the principle of the exchange of stabilities holds

in our system; i.e., whenever the real partwobecomes zero,
{(x,t) = eh(x,t) = ehpexpligx + wt), (35  so does the imaginary part, meaning that a Hopf bifurcation

does not occur from the planar state.
X(X,Z,t) = xo(X,2) + e(a+bz)expligx+ qz+ wt), Figure 2 shows the neutral curvehick solid line and

(36)  most dangerous modghin solid line for =0 and 0.001
(dashed lines There we also showdotted line$ the case
with 7=0.0015, where the surface is always unstalsiee
below). For typical parameter values we find that 10 3
corresponds to a uniaxial stress between (i even
smalley and 1 bar, which is not outside the range of possible
experimental situations. We can see on the figure that for a
small V, the line of the most dangerous mode is concave in
the presence of an uniaxial stress, and it is convex otherwise.
_ 2 172 2 1/2 Given the validity of the stability exchange principle, the
027 2(1+ a7 @)Wl (107 w) conditions for the instability threshold reduce ¢o=0 and
+k(1+ v?g%+ vw)Y?+k—1]=0, (37  dw/dg=0. Analytical expressions for the wave number of

where y denotes the Airy function of the perturbed system,
and xpe that of the unperturbed prestrained system
[ Xo(X,2)=—p(x?/2)+ (0o—p)(Z%/2)]. The stress problem
was solved in Sec. lll.

Using the new boundary conditiof80) in the standard
linear stability analysis of the planar front in directional so-
lidification, we arrive at the dispersion relation
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the critical mode and the critical velocity may then be de-a result that was obtained in RgR21] for the one-sided
rived. From Eq.(37), we obtain model. We have replaced the subscdfiity c1 to emphasize
the fact that this is the first of two thresholds that we con-
2[1—(1+ )]+ we[ (1+ ) Y2+ k(1+ v2q?) Y2+ k—1] sider.
The behavior described by E@7) is very different from
=0, (40) the usual proportionalitg., ~ V22 arising without the elastic
, o 12 5 > 12 term. Of course, the latter can be recovered for sufficiently
Wol(1+9%) 7+ k(1+v°q7) "+ k—1] small values ofy, but one has to start off from Eqg5) and
(46) again, because E¢7) is already based on the assump-

_ 2 :
+q Wq—2 n kwgv —0, (a1 tiondo<z. o
(1+g®¥2  (1+12g%)Y? The threshold velocity is given by
with Voo 1+ko| . anfly  do(1+k)? . 4771\ °
A 1T _a _ 7 ’
, D, |7 G glr |
Wq=2d0q—47]. (42) (48)
Defining effectivecapillary and thermal lengths by displaying the leading terms of an expansion in powers of
1-47%%T1/dy. In Ref.[21], only the first term of the series
d=d 27y 43 was given(for the one-sided model, i.ex=0). Evidently, in
omro g (43) order for the critical velocity to be positive, we neeg

<4T+/d,. If this condition is not met, the planar interface
will be unstable for arbitrarily small velocities due to the
=, (44  ATG instability.

It is instructive to examine the case of vanishing critical
we can map the problem with elasticity to the one without. velocny From Eqs(47) and (48) we haveq.=27/d, and
For the resulting expressions are identical to those of ordi#?=d/417, hence q2=1/(dol;). Considering the pure
nary directional solidificatioi22], with d, replaced byd, ATG instability, we obtain

andl; replaced byl . Of course, this mapping is admissible

only when the newly defined effective lengths are nonnega- \/geffAP \/ \/L|m|Ac G /1
tive. Twy YV Tuy [mlAc dol

A. Lower velocity threshold

. . . the same result, evidently. So we may express the critical
It is then possible to take the expressions for the lowegimensionless stress for the ATG instability under the effec-
and upper thresholds of the linearly unstable range from th@ve gravity produced by a thermal gradient and the critical

literature[22]. Making the appropriate substitutions, one ar-wave number by the very simple formulas
rives at the results for the elastic problem, providing, as we

shall see, thaty is small enough. Assumings>1 andd,g? TG 1\/d\O
<1, the low-velocity threshold is, to lowest order, given by e I3’ (50
3
k(1+v)
0c=| —= , (45) at_ [ 1
4d0|_'2|' qc N dOIT. (51)
2|_T B. Upper velocity threshold
C1+ky” (46)

At high velocities, the stability tongue again closes in
] directional solidification without elastic strain. Once more
In the case of the one-sided model, the numerator of&5).  substituting effective capillary and thermal lengths to obtain
must be replaced with k2 (but »=0 elsewhere Note that  the expressions with strain, we fifid,=(1+k+kv?)/2k?]

these two equations determiig implicitly, since bothd,

and|; depend or_ . _ N _ _ _ _o_ 1 —e, (52)
We shall characterize quantities that are given in physical 2k
units by an overtildgif they are used both in dimensional
and dimensionless formAlgebraic manipulations of the dis- —1 €’
persion relation yield, for the critical wave number, I+ :a’ (53
~ 27] ado 2 2 26
Oc1 3 + 16772VC1’ (47) Oc 9 (54
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Herein, € is a small parameter, measuring the distance fronsmaller and smaller. The self-interaction of the front be-

the absolute stability limif22] (providing the latter exisjs  comes local, and usually capillary effects overcome the dif-

and hencey, is also small. fusive instability. Since elasticity always acts on large scales,

Simple manipulations provide us with critical velocity it wins over diffusion and determines the dynamics at large
scales ¢ small.

Ve 1 (1 1+k+ke?

20 dy-aye 2k 84 (do—47°1)%}, V. WEAKLY NONLINEAR BEHAVIOR

(59

2
2
The main outcome of the linear theory is the determina-
where the bracketed terms again constitute the beginning oftéon of the condition for the onset of the instability and the
power series, this time in the variafiig— 4721 . In contra-  'ange of modes which are likely to grow first. In order to
distinction with the lower velocity thresholsee Eq.(48)], obtain mfo_rm_atlon beyond the |n_stab|I|ty thresholq, a nonlin-
the leading term of this series is independent of whether w&ar analysis is necessary. In a first step, we restrict ourselves

are dealing with the one-sided model or not. It was aIread)FO an analysis of the weakly nonlinear behavior to determine
. . o~ . the nature of the bifurcation. This analysis, which is standard
given in Ref.[21]. For »°=dy/4l;, the upper velocity

. . . . .[23,117], consists of an expansion in powers of the amplitude
;chret_shol_d ?;]v?rges, i.e., the ATG instability prevents restabl-Of the deformation up to third order.
1zation in hat case. If A(t) is the instantaneous deformation amplitude, the

resulting equation will take the form
C. Discussion of linear stability

A striking result is that despite the small value of the d_A:wA+ a,AS. (56)
external stress, the neutral curve exhibits unexpected dt
changes. For example, both the upper and lower limits of th
threshold are, respectively, about ten times smaller an%
larger than the MS onggote that the scales are logarithmic;
Fig. 2). The dimensionless parametefsee Eq(32)] can be
as small as 10°. As is seen from Fig. 2, even a value o
7=0.001 leads to a very pronounced shift of both the mini-
mum and maximuniclose to 10. The same holds for the
scale of the most dangerous modes close to the upper a
lower limits (compare the thin dashed line to the thin solid
line). Here elasticity favors small scales at low speed and®

Ia2rge fceﬂes at large speed. !'Et us analyze(E@. When (7), given the pertinent boundary conditiof®8) and(30), in
n°~4l+/dy, no threshold exists anymore. Using the faCtthe forms

that T1/do~10°, one sees that the threshold should disap-
pear for »=10"3-102. Let us now estimate the order of

e recall thatw is the linear growth rate determined in Sec.
, Whereasa, is the Landau constant, the sign of which
tells us whether the bifurcation is subcritica,(>0) or su-

f percritical @;<0).

So our goal will be to determine this constant. This ap-
proach has been applied to directional solidification before
Il; 1], so we can be brief in our description of the procedure,
and will just give the basic equations and results. For ease of
resentation, we will consider the one-sided model only.
We look for solutions to the equations of moti(®v) and

o0

magnitude for the physical uniaxial stress for which a con- U(X,Z,t)ZHZO €"Un(X,2,1), (57)
siderable effect must be expected. For that purpose, from Eq.

(32) we extract thatr2=ELAT/Ty (AT=|m|Ac), where *

the Poisson ratio(typically of order 1) is disregarded. x(X,z,t)= E €"xn(X,2,t), (58
For many metald =10J/g=1C® erg/g, and E=10'*-10" n=0

cgs. Finally for very dilute metald=1 K (and possibly
smalle), while the melting temperature lies in the range

©

— — n

1000-1800 K. This amounts on the average dg g(x't)_eh(x’t)_go €'hn(x.0), (59
=10° cgs, or equivalently a stress corresponding to the at-
mospheric pressure. For more dilute and soft materials witland assume that
“weak’ crystallization (small AT, E, andlL), it seem fea-
sible to reach critical values af,=0.1-0.01 bar. Thus it uy(x,2,t) =A(t)cogqx)uy(2), (60)
appears that the effect we have put forward can be checked
experimentally by applying moderate pressures. The same x1(X,z,t) =A(t)coggx) x1(2), (61)
effect is expected on the wave numbers; variations of one

h,(x,t)=A(t)cogqx), (62

decade by application of a uniaxial stress of the order of a

fraction of the atmosphenc pressurez. ~ ~ whereu,(z) and x1(2) constitute the solution to the linear-
If the tongue is preserved.e., n°<4dy/ly), and for jzed problem. Inserting Eq$57)—(62) into the basic equa-

typical values given in the caption of Fig. 2, we find that ions one arrives in a straightforward manner at

Vcl/Vmsl~7: qu/QCmsl~4! Wh|le VC2/Vm82~40 and

Oc2/dems2~ 20, where the subscript ms refers to the bare Un(X,Z,t)=A%(t)[Uy(2) + Up(2Z)cog20X)], (63

Mullins-Sekerka value. The fact that elastic effect is much

more pronounced in the large velocity regime is understood  ug(x,z,t)=A3(t)[ Uz;(2)cog gx) + Usy(z)cog 3gx) ],

as follows. At large velocity the diffusion length becomes (64)
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as well as

X102

ha(x,t) = AZ(t)[ hyo+ hpc0820%)], (65) 157 B

ha(x,t) =A3(t)[ hz;coqqx) + haxcog3gx)],  (66)

and similar expressions for(x,z,t), which we do not write

out here. Truncating the expansion at order 3, we obtain Eq.
(56) for the temporal evolution of the amplitudg(t) with 5 - L
a;/w=0(€?). To obtain the third-order result for the full
problem, we will need to evaluaje only up to second order
[12]; its form is then

aq

0 -~
X(X,2)= oo (5112 + S10)COL g X)€%
+(S212+ Sp0) 08 20 x) €297]. (67) 5 -
The solutions to the second-order problem yield _|3 _|2 _|1 l)
Uog(Z) = Upg€™ #2%,  Upy(Z) = U™ H22, (68) log 1O(d0)
where =1+ m andu,,=1+ m Solv- FIG. 3. The Landau constant as a function of the reduced cap-

illary length. A negativea, corresponds to a supercritical bifurca-

ing the elastic problem, thus obtaining the coefficiesys tion. =1.5x10"2

and s,,, from the surface equations we obtain two linear
systems of equations determining the paihsg(u,g) and
(h,,,u5,), respectively. The coefficients are collected in the
appendixegfor the limit ®=0).

For a calculation of the Landau coefficiea, it is suffi-
cient to compute the terms involved in the equationifey.
The bulk equation; contain a contribution due. to the.third- 31=Uzz[ﬂ722(ﬂ|—uzz)+q2 Ul ool 41— f20)]
order term proportional to cogf) that appears in the time
derivative ofu,. Therefore, the equation faor;;(z) takes the

given ratio) This solvability condition fixes the value @f;
in terms of the system parameters.
The result is

the form +hof (2—=Wg)g?— 2 +4]
Uz _dug _ 2—w
e +t2—~=wugta(2-wg)e #z, (69 —[mi+2(k—1)1xq— Tqqu—i-,u,,—Z. (73

where p) =1+ J1+q°+, andwg has been given in EQ. The pure ATG instability is known to be subcritiddl2]. We

(38). The pertinent solution to Eq69) reads have checked that our result reduces to that of Nesid 2]

(2—wy) in the limit V—0. The Mullins-Sekerka instability may be

! q (e~ H3Z— g~ MZ)  (70) subcritical or supercritical depending on the velocity and the
20 partition coefficient. For small velocities the MS bifurcation

B — . is subcritical[11] for k<<0.45 (which is the case for the
where pg,=1+y1+3w+g’. In the_ limit »—0, the two majority of metal$ and supercritical otherwise. Here we find
exponents are equal, and the solution becomes

that in the smalV or equivalently largey regime the(third-
) ordep Landau constant is dominated by the ATG effect
e Mz,

a
U3y(2) =uge” #3¥+

Usy(2) = ( Ugq— Mz (71  Which behaves ag”; the MS effect behaves aﬁ However
V1+9? as 'V increaseqor, equivalently, on increasind,, the re-
duced capillary length—recall that it is reduced by the diffu-
From the boundary conditions for the diffusion fi¢ligs.  sion length, and if the MS bifurcation is supercriticéén-
(30) and(28)], we find two inhomogeneous linear equationssured by not too small a partition coefficignone finds a
relatinghs; andus;: transition from a subcritical bifurcation into a supercritical
one. The result is shown in Fig. 3. Since the critical velocity
for the change of regime is not too large, this result is not

ha
L( u ) =Fa@lr.nk). 72 devoid of experimental testability.

31

The linear operatot. on the left-hand side is a matrix the
determinant of which vanishes at the bifurcation. This means
that the vectoiF on the right-hand side must satisfy a solv-
ability condition: it must be orthogonal to the left-side eigen-  Let us first summarize the main results of this paper.
vector of L corresponding to the eigenvalue zekdMore (i) We have shown that the MS and the ATG instabilities
down to earth: the two componerits andF, must have a are strongly coupled. The main reason for this is that they

VI. SUMMARY OF IMPORTANT RESULTS
AND CONCLUSIONS



6036 CANTAT, KASSNER, MISBAH, AND MULLER-KRUMBHAAR PRE 58

both operate in directional solidification at similar length pptained in the pure MS case. In that C%S:[4k2/(1
scales(about 100 um). The effect should be visible experi- | \y]¢. Thus the ratio takes the form

mentally upon an application of a stre@wost likely by
means of piezoelectric platesf order 0.1-1 bar. The criti-
cal physical velocity of the usual MS instability is given, for
. . dc. 8npyl+k
the one sided model, roximately; see Eq48 =~
bhapp y q48)] KT (79)

Ve 1 1 4772TT
do |’

dcms

- (74)
D 21y For parameters given in the caption of Fig. 2, we find that
~ ~ Jc/dems™~ 1/20 (where we have chosee=0.1 andk=1).
where we recall thaty is the thermal lengttd, the capillary  For a smaller partition coefficierithe case of many metallic
length, andy is related to the applied stress and is given bya|loys) the effect is even more pronounced. That is to say the
Eq. (32. The critical velocity is lowered by the applied \yavelength is increased at large velocities by a large amount.
stress. In the extreme limit wherg?=41+/d,, the critical (iv) We have studied the nonlinear evolution of the bifur-
velocity vanishes. This equality requires a stress of ordegation by deriving a Landau constant whose sign determines
0.1-1 bar. By approaching this value, we expect the instathe nature of the bifurcation. The pure ATG instability is
bility to develop at arbitrary small growth velocities. subcritical according to Nozes's calculationf12]. At the
(ii) The stress has an important effect on the critical wavejower velocity threshold, the MS bifurcation is subcritical if
length. We have found that typically the critical wave num-y is small k<0.44..) and supercritical otherwise. We have
ber behaves as shown here that ik is large enough, the bifurcation becomes
supercritical due to the MS bifurcation nature klfis small
(75) enlough, then the ATG-MS bifurcation will remain subcriti-
cal.
It is worthwhile to note that the present work could be of
On the one hand, the dependence on velocity is completelyome relevance in the context of the formation of giants
different from that of pure MS bifurcatiofwhich leads to a causeway in igneous rocks. These are patterns that are
dependence lik&/?", to be compared to an exponent which known in the geology literaturg24] to form by contraction
is three times larggr This effect is clearly not devoid of during cooling and crystallization of the lava. We hope to
experimental testability. On the other hand, the value of th@eport on quantitative results in the near future.
wave number is foundfor the parameters used in the caption  Finally an important task concerns the experimental test-
of Fig. 2) to be about four times larger than that of the PUr€apility of our finding. A possibility would be to use a cell
MS one(larger values are possible by increasing the stress it “niezoelectric plates in order to impose a controlled
Thus application of a stress should lead to a finer structure, ,iavial stress on the solid. as was devised%de by Bali-
(iii) At large enough velocities, elastic effec_ts are even .. -nd co-worker§7]. '
more prc.mounce.d. 1§ is Sf“a” enoug.r(the physical wave Transparent materials such as succinonitrile are not, in
number is small in comparison to the inverse of the diffusion

length, then Eq.(55) gives, as a threshold val(after trans- _Io_l# ?jplnlon, tswtable, ?miﬁ :helzset_hzvi pl_astlc propetr'?les(.j
forming the variables back into physical dimensigns IS 0€s not mean so far that p'astic behaviors may not ‘ea
to interesting features. But this question is beyond the

~ 27 2kdy ,

=——+—— V2.
Oc1 o | 1672 cl

D present study. Of course transparent materials have interest-
chzﬁ, (76) ing properties, such as the allowance foriarsitu analysis,
k(do—47%°I1) and it would be very important to take advantage of that.

However, many materials that enter this category not only
where the subscript 2 is a reminder that we consider thgossess plasticity, but are smooth on the atomic scale, and
upper velocity threshold. In the absence of stré®s;  therefore exhibit faceted morphologies. In contrast many me-
=D/kd,, expressing that the diffusion length is twice the tallic alloys are rough on the atomic scale, and lead to
capillary length. In the presence of stress, the velocity restarounded growth shapes. We believe that metallic alloys are
bilization is increased. USing the values used in the Captiom'nportant candidates on which to perform such experiments_
of Fig. 2, we find thatv, is about seven times that of the By now there exists an overabundant literature about direc-
pure MS case. _ _ tional solidification on these materials. The effects we put

The critical wave number also varies with stress. Its exforward should be easily detectable since they involve strong
pression is obtained from E¢54) by using the above rela- changes both on the threshold values and the scales of the
tion for the bifurcation[which can be rewritten to leading pattern. We believe that experimental checks of our theory
order asy’ly=(do— 1/2k)/4] are decisive in order to guide further developments.

dc=(8/3) /e, (77

where we have set#+1—-8/9=1, and e is the distance
from the absolute stability limit. Typically for an ordinary  This work was supported by a “PROCOPE” grant in the
gradient,e=0.1-0.01. Let us compare the presgpto that framework of a French-German cooperation.
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] where we have used the condition of mechanical equilibrium
| reservor at the boundary in a twofold way: first, the conditief,
, T liquid ﬁ (chetuical potential) =0 tells us that the stress tensor is diagonal in the coordinate
system spanned by the normal and tangential vectarsdt;
HLL B second, we have replaced the liquid pressypie with
s — ohn, Neglecting the cross-term between elasticity and cap-
illarity. Moreover, we have expressed the local change of the
stress solid T stress volume elemensdV in terms of the appropriate strain expres-
] sionsdsV=Tr(du;;) V.
Our next approximation is to neglect the cross-term be-
tween gravity and elasticity, arising from the change in pres-

dnod [

-
dx

FIG. 4. Calculation of the surface potential. sure due to the height change produced by the volume ele-
ment. Therefore, we can assume that, is constant. Then
APPENDIX A: DERIVATION we obtain, from Hooke's laWEqg. (1)],
OF CHEMICAL POTENTIALS ) )
l-o l1-o
1. Pure ATG instability duttz?dottsz(o’tt— Onn)- (AB)

In order to obtain the difference in chemical potential be-
tween the liquid and solid phases, we consider a referend@serting this into Eq(A4), and integrating to finite stress
state, in which the two phases are at equilibrium, and calcudifferences, we arrive at
late the change in the Gibbs free energy of the system on
transforming a small mass element of liquid at the interface AG.=
into solid (see Fig. 4. We denote the volume of the trans- el
formed solid bysV.

The total change of the Gibbs free energy will then be In a way, the calculation of the gravity part is the most
subtle piece of the evaluation AfG. Since in order to obtain

AG=AF+A(pV)=56VAu(X, (X)), (A1) a volume 8V of the solid, we have to solidify different
volume (6Vp,/ps) of the liquid, it looks, at first sight, as if
as we are referring the chemical potential not to mass but tthe equilibrium condition at the interface becomes nonlocal,
the equivalent solid volume. Her®eF is the change in Helm- because we need to fill in the missing liquid volufpeovid-
holtz free energy. This quantity can be decomposed inting ps>p,) with liquid from elsewhere, and we should have
three parts, to specify from where it came. For example, if we know the
initial height of the liquid level above the solid, it is easy to
AF=AF,+AF;+AF,, (A2) see that the change in potential energy in the gravitational
field on solidifying a small piece of liquid will depend on
whereAF,, corresponds to the change in free energy of thehat height. However, we will take the point of view here that
bulk phasesAF; is the interface part, andF, is the free this dependence is absorbed into the equilibrium height of
energy change of the transformed mass element. The firthe interface. We formulate our discussion in terms of free
contribution AF,, is zero, because the bulk phases are nogenergy rather than potential energy. It is then found that we
modified, except at the position of phase transformation, th&ave to take into account two terms; one is the integral of the
contribution of which is explicitly taken into account in the second term in Eq(A3), the other arises from the variation
last term. The second contribution, the change in surface freef the hydrostatic pressure with heightp = —p,;g d. The
energy, arises from surface tensiaiF;= ySA, with A the  total contribution then becomes
change in surface area, whereas the last contribution has to
be calculated from the work necessary to bring a volume AGgray=Apge(x) V. (A7)
element of solid to the appropriate position in the gravita-
tional field, and to increase its internal strain to the prevailingno
value. This is obtained by integrating the work for an infini-
tesimal changé14]

_ 2

g 2
T(Utt_o'nn) oV. (A6)

For the surface energy contribution, we simply have to
te that in the case of one-dimensional deformations the
surface change is proportional to the change of arc length in
the plane of the deformations. Because the curvature is the
variational derivative ofis/dx, wheres= [*\/1+¢"(x)%dx

df=ojdu; +pg dZ. A3 is the arc length,
Therefore, this latter contribution is naturally split up into an 5 ds/dx
elastic and a gravitational piece. K=y (A8)
For the differential of the elastic contribution t0G, we ¢x)
may thus write we have
dGg=ojjdu;; oV+pd(6V) 8s' (X)
5A=f5—dx d§ dy=:<5V, (Ag)
=[(onpdUnn+ oydUy) — opp(duyy+duy) 6V £(x)

=(oy—onp)duydV, (A4)  and hence
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AG cap_ YK oV. (A10) Liquid

Collecting the terms from Eq$A6), (A7), and(A10), and TO: .............. N

dividing by 6V, we obtain liquidus
1-o?

Ap=—F= 2E (Utt O-nn) + ‘}’K+Apg§(X) (Al11)

solidus

Solid

which is identical to Eq(3).

D¢
2. Directional solidification

. . . . . FIG. 5. Phase diagram of a dilute alloy.
Here we will derive the chemical potential difference be- g Y

tween the solid and liquid phases in directional solidification Finally, collecting the terms, we find

without regard to elastic effects. Then, in the same spirit as

before, neglecting cross terms, we will add the elastic con- ~ L

tribution. Ap=yr+(T,— TM) +c,|m|| (A18)
The condition for chemical equilibrium of the solute is

Adding in the stress expression, we arrive at £9).
On replacingT, in this equation byl y+ G{, we note the

To obtain the interface temperature, giving us its position vieanalogy of the ternGLZ/Ty with the termApg{ in Eq.
T=To+G¢, we will write down the chemical potential of (All). This means we can describe this expression as
the solvent; exploiting that we have a dilute alloy, we do thisequivalent, for the ATG instability, to an effective gravity of
calculation by an expansion about the point of reference denagnitudeg.sAp=GL/Ty . A calculation with typical val-
scribing the pure substance ues for the thermal quantities shows tlgiAp exceeds
gAp by at least four orders of magnitudsee Sec. I\
Co=Cs=0, T=Ty, Po=Pxo=Pi(Tw). (A13)  Therefore, we are entitled, in combining Eq&11) and

(A18), to neglect the true gravity term in comparison with
This point of reference corresponds to an equilibrium situathe effective one.

tion, hence we haveu,=pug. Thus we obtainA = ug

co=kKg . (A12)

— w directly: APPENDIX B: STABILITY EXCHANGE PRINCIPLE
s  ~dug dps I Setting w=w,+iw; in Eq. (37), we obtain the neutral
Au=cs——+ vk —Ty)—=——C—— : ;
Jc oT Jc surface separating stable and unstable regions of parameter

space by requiring the real past to vanish. This leads to

I the following set of two real equations:
~(T=Tw) 7 (A14) g q
X1 X2
The partial derivatives of. with respect to pressure and with 2—\2x,+wq 2 + kﬁ +tk=1]=0, (B1)

respect to temperature are knownecall that we refer the
chemical potential to the unit volurie

V2

|(1)i| 1- +Wq =0. (BZ)

\/_Xl \/Exz

Herein, we have introduced the abbreviations

I
~booT

I

— =-5, Al5
. (A15)

p,C

where s is the entropy densityentropy per volumg Evi-
dently, the latent heat per volume can be expressed via the
entropy density

X1 ={[(1+0?)%+ 1"+ 1+ g%}, (B3)

X,={[(1+v?9%) %+ 1?w; 21124 1 + v’q?1Y2, (B4)

L=Tm(s—Ss)- Al6
u(Si—Ss) (A16) which are related to the square root expressions in(&g.

The combination of partial derivatives with respect to con-Lfor w,=0] via
centration that appears in EGA14) is obtainable from the

phase diagranfsee Fig. 5. Phase equilibrium along the Ii- (14 2+ ;) L2= i _— i (B5)
quidus and solidus lines is expressible as ! %)
dps dCsdus du  de du .
T T e T T T AT e 2021 12_ i
dT gc dT dT dc (1+veg°+ivw) —T X2+IVX— . (B6)
(A17) 2
PN ka’“s I —=|m|(ss— ) =|m| L Note that we have defined square roots to have a positive real

Jc Jc TM ) part_
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Let us nowassumethat there are solutions to the system Then the elasticity term in Eq.(30), s=(oy— 0nn)?
of equationgB1) and(B2), with w;#0, i.e., that the stability — o3/a2, becomes
exchange principleloes not holdThen Eq.(B2) implies the

vanishing of the bracket term, so we obtain s=S;a Acogqx) +[ Syt $c042qx)](a A)?

X, Xy & +[S51008 qx) + Szxc0439X) [ ( A)°, (C2

—+k—=+k—-1|=2x,—2, B7 .

Yo 2 2 X E7) with
1 . kv \ 2 ) ©8) S;=—4q,
Wy| =—+—|=—-1.
‘ V2%, V2x,) X S20=0,
2 (C3

From its definition, we see that,> /2, and thus the paren- S22=4q°—8h,.q,
theses on the left-hand sides of E¢R7) and (B8) are posi- 3 )
tive, while the right-hand side of E¢B7) is positive and that S31=60°+80 N2~ 4q 3.

of Eq. (B8) is negative. Thus we find/,>0 from Eq.(B7) The coefficients appearing in the calculation of the con-
andw,<0 from Eq.(B8), which is a contradiction. There- cantration field and of the interface position are
fore, our assumptiow;# 0 was wrong, and the principle of

stability exchange must hold. Far =0, Eq.(B2) is satisfied Upg=—1+ %(Z—Wq),u, ,
automatically, and Eq(B8) is not implied. The conclusion

from Eq.(B7) remains correctw,>0 on the neutral surface. h2=0,

Hence we have demonstrated that the bifurcation from the

planar interface never is of the Hopf type. Upo=H"H4K[ — 14w 3(2—wq) —479°%]

— _ _ 2
APPENDIX C: AMPLITUDES IN WEAKLY (27 Wog)[2k= (2= W) (@ Hku) T} (C4)
NONLINEAR ANALYSIS hap=H ™12k~ (2—wq)(q*+kp)

First, we give the coefficients appearing in the expression

for x to second order: —[p2ot2(k=D)I[1+470°— w3 (2= wg) T},

where we have used the notations
si=(aA)3| — 3—q+ Nz
10 4  2) H=4k—(2=wyq)[ uoot2(k=1)],
302 5gh wo=I71=475q+dyg?
Sll——aA+(aA)3 i"‘ q 22 y a T 0
8 2 -1 » (CH
(1) W= I1"—87g+4dyq”,
1 4
E— 2 3dyq
Sz~ g (@A) Xq= 7(6G°+80%N5) — —g—.
Sy=(a A)2 E—h In the limit »=0, these results become identical to those
21 2 2 of Wollkind and Sege[23].
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